2022 James Dyson Award Global Winners announced

The James Dyson Award has given more than £1m in prize money to over 300 promising inventions from young engineers and scientists around the world. This year, Sir James Dyson has selected two global winners, each receiving £30,000, and one runner-up, receiving £5,000 in prize money, to support the next stages of their inventions.

2022 James Dyson Award Global Winners announced

Commenting on this year’s competition, Sir James Dyson said:

“Every year, the James Dyson Award offers proof that young people are passionate about improving the planet and solving environmental and medical problems. There are people who grandstand over the issues they care about, but these young inventors are doing something more productive. They are diligently applying themselves to problem-solving using engineering, science and ingenious design.”

The winning inventions

International winner – SmartHEAL, invented by Tomasz Raczy?ski, Dominik Baraniecki and Piotr Walter

The problem

When covered by a dressing, it is very hard to know how well a wound is healing. The most common mistake in wound healing is changing the dressing too often, which can lead to infections and tissue disruption.

Current methods of assessing a wound rely on subjective scoring of colour, smell, temperature – or expensive laboratory biochemical tests. Poor wound healing not only leads to tissue inflammation, but also necrosis (death of body tissue that is irreversible), and can lead to severe illness or death.

In the United States, 3% of people older than 65 years have open wounds. The US government estimates that by the year 2060, the elderly population will be over 77 million. Chronic wounds are likely to be a persistent problem in this population.

The solution

SmartHEAL is a precise, affordable and scalable smart pH sensor for dressings. By using Radio-Frequency Identification (RFID) communication systems and monitoring the pH of a wound, SmartHEAL can assess the wound’s condition and detect infection without removing the dressing, and therefore without disrupting the tissue. Medical professionals can subsequently analyse the data and prescribe the appropriate treatment for the wound. Smart bandages create and preserve a balanced wound environment.

“We’ve all nervously peeled back a dressing or plaster to see what is happening underneath. SmartHEAL, a smart dressing, has won the International James Dyson Award because it provides doctors and patients with a key piece of data – the pH level – that can tell them how a wound is healing. This can improve treatment and prevent infection, saving lives. I hope the Award will give the team impetus to proceed down the tricky path towards commercialisation.” – Sir James Dyson, Founder and Chief Engineer at Dyson.

Next steps

The team will finish testing and then start clinical trials. Their aim is to then finish the certification process in three years’ time so they can start to distribute and sell SmartHEAL dressings in 2025.

On winning the James Dyson Award International prize, the SmartHEAL team said: “We are super excited to be the International Winners of the James Dyson Award this year! This is and will be a great opportunity for us to become a part of something bigger, something that hopefully can change the world. We strive to refine our prototype, obtain a patent and pass the necessary clinical trials to commercialise SmartHEAL. We were honoured to be greeted by Sir James Dyson himself. His words: “Congratulations! You are the International winners of the James Dyson Award “still ring in our ears – we’re still in disbelief, joy and happiness!”

Facts and stats

It is estimated that 1 to 2 % of the population will experience a chronic wound during their lifetime in developed countries. The dramatic increase in the ageing population will increase these numbers as wound closure is negatively associated with age. Chronic wounds impact the Quality of Life (QoL) of nearly 2.5% of the total population in the United States and the management of wounds has a significant economic impact on health care.
Sustainability winner – Polyformer, invented by Swaleh Owais and Reiten Cheng

The problem

While working at a makerspace in Rwanda, Swaleh and Reiten learned that many locals could not use the makerspace’s 3D printers, due to the high price of importing filament to the country. They also observed the lack of infrastructure to recycle plastic bottles in Rwanda.

The solution

Polyformer is a low-cost machine that turns plastic bottles into 3D printer filament. Polyformer cuts plastic bottles into long strips that are fed into an extruder. The strip is then thermoformed into 1.75mm filament, as it goes through a nozzle. The filament is passed through vents to cool the plastic before it is wrapped around a spool, ready to be inserted into a 3D printer.

The invention is targeted at developing nations due to the high price of importing 3D printer filament. With Polyformer, makers have easier access to cheap, high-quality 3D printer filament. This encourages usage of design infrastructure and career consideration in developing nations, while empowering makers to recycle their own waste and use the output productively.

“By turning used plastic bottles into 3D printer filament, Polyformer helps reduce the amount of waste going to landfill and provides a cheap and plentiful material for engineers and designers, especially in developing countries. Their idea will provide new opportunities for other inventors to prototype their ideas using 3D printing.” – Sir James Dyson, Founder and Chief Engineer at Dyson.

Next steps

Currently, Swaleh and Reiten are building new Polyformers to deploy at their partner makerspaces in Rwanda and they are designing new inventions within the Polyformer project, such as the Polyjoiner, Polydryer, Polyspooler, and many more.


A standard 500ml plastic bottle can only produce 3m of filament, which is not long enough for most print jobs. Therefore, Swaleh and Reiten have developed Polyjoiner, a mechanism that can automatically join multiple strands of printer filament together into a long singular piece. Here is a brief demo:


PET is hygroscopic, which means a plastic water bottle is likely to absorb some of the water it’s filled with. The presence of water in filament negatively impacts print quality. Therefore, Swaleh and Reiten are developing Polydryer, a low-cost machine that evaporates moisture from 3D printer filament.


Long strands of 3D printer filament must be wrapped around a spool. This ensures the filament does not get tangled while the printer is running. The Polyformer team are developing Polyspooler, a simple machine that automatically spools our recycled filament, thereby making the filament more practical to use.

The entire Polyformer project is 100% open-source with all CAD, code, and building instructions available on their discord: https://discord.gg/d6eYykSs. Open-source software can be beneficial for growth in developing countries due to a lower development cost, more security and better quality. It supports collaboration, employment opportunities and skills development, encouraging community development and collective equity.

After speaking to Sir James Dyson, Swaleh and Reiten said, “It is a great honor to be the James Dyson Award 2022 Sustainability winner. We are using the prize money to deploy several Polyformers and Polyformer-Lites at our partner makerspaces in Rwanda. With these machines, local students, designers, and makers in Rwanda will have access to low-cost 3D printer filament. This means they can use their community’s 3D printers more frequently! If you would like to build your own Polyformer, please check out our Discord: https://discord.gg/77esvRwu.”

Facts and stats

Of the 40 million tons of plastic waste generated in the U.S. in 2021, only 5% to 6% – or about two million tons – was recycled.
The total bottle recycling rate for 2020 was 27.2%, down from 28.7% in 2019.
Plastic bottles take upwards of 450 years to degrade.
The global 3D printing market size was valued at USD 13.84 billion in 2021 and is expected to expand at a compound annual growth rate (CAGR) of 20.8% from 2022 to 2030.

Globally, 2.2 million units of 3D printers were shipped in 2021 and the shipments are expected to reach 21.5 million units by 2030. A standard roll of 1kg of filament retails for over €45 in local markets. The same roll of 3D printer filament can be purchased in Germany for just €11. This price difference is compounded by the lower purchasing parity in Rwanda. The exorbitant cost of filament creates a high barrier of entry for Rwandans to access 3D printing services.

The first major factor that influences consumer recycling behaviour in developing countries is the accessibility of recycling services, often based on the convenience of recycling collection services. Consumers who have easy access to recycling are 25% more likely to recycle.
International runner up – Ivvy, invented by Charlotte Blancke

The problem

Charlotte became aware that a colleague of her mother was unhappy about the uncomfortable apparatus her child was required to use for her medical treatment. The colleague mentioned that she in fact switched an intravenous pole for a coat hanger to improve her daughter’s comfort.

During Charlotte’s research, she found that at-home medical treatment is rising, but the equipment used for at-home intravenous therapies is the same as that in hospitals, despite the characteristics of a home setting being different. As more patients move to home healthcare services for recuperation or long-term care, complex medical devices are now used more frequently in the home, often under unsuitable conditions.

The solution

Infusion therapy is when fluids or medication are administered through a cannula or needle at a controlled pace. Ivvy replaces the current intravenous drip pole with a wearable device that provides patients with optimal mobility, an easy-to-use infusion pump, and on-board software so nurses can monitor their patients remotely.

Currently, there is a lack of feedback about intravenous treatments and existing infusion pumps have a complex interface. Charlotte has developed an infusion pump with a simplified interface and intuitive use. Nurses can easily set up the treatment at-home and patients can follow their therapy through a LED strip, display, and sound notifications.

“Being treated with an old-fashioned IV drip on a tall stand can make home seem like a hospital. Ivvy is a simple concept that could improve people’s treatment and enhance their quality of life. It shows the brilliance of simple design and I wish Charlotte every success in developing her idea towards commercialisation.” – Sir James Dyson, Founder and Chief Engineer at Dyson.

See more breaking stories here.